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ABSTRACT Lefamulin, the first semisynthetic pleuromutilin antibacterial for intrave-
nous and oral treatment of community-acquired bacterial pneumonia (CABP), and
comparators were evaluated for in vitro activity against a global collection of pathogens
commonly causing CABP (n � 8595) from the 2015 and 2016 SENTRY Antimicrobial Sur-
veillance Program. Lefamulin was highly active against the pathogens Streptococcus
pneumoniae, including multidrug-resistant and extensively drug-resistant strains (MIC50/90

for total and resistant subsets, 0.06/0.12 �g/ml; 100% inhibited at �1 �g/ml), Staph-
ylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA; both
MIC50/90, 0.06/0.12 �g/ml; 99.8% and 99.6% inhibited at �1 �g/ml, respectively),
Haemophilus influenzae (MIC50/90, 0.5/1 �g/ml; 93.8% inhibited at �1 �g/ml), and
Moraxella catarrhalis (MIC50/90, 0.06/0.12 �g/ml; 100% inhibited at �0.25 �g/ml), and
its activity was unaffected by resistance to other antibacterial classes.
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Community-acquired bacterial pneumonia (CABP) is a potentially serious respiratory
infection with incidence rates of approximately 10.6 cases per 1,000 person-years

in the United States (1) and ranges from 1.7 to 11.6 cases per 1,000 person-years as
reported from Europe (2). It is a leading cause of hospitalization worldwide (3, 4) and,
despite antibiotic treatment, is still a relevant cause of death (4, 5). Together with
influenza, community-acquired pneumonia is the eighth most common cause of death
in the United States (6). Streptococcus pneumoniae is the most commonly isolated
pathogen associated with CABP; other common etiologic bacterial pathogens include
Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and the atypical
pathogens Chlamydophila pneumoniae, Legionella pneumophila, and Mycoplasma pneu-
moniae (7, 8). Current recommendations for the treatment of CABP include initiation of
empirical antibiotic therapies, which vary depending on the treatment setting, and may
include monotherapy with a macrolide, doxycycline, respiratory fluoroquinolone, or
combination therapy with a �-lactam plus a macrolide or a respiratory fluoroquinolone
(9, 10). As a result of the increasing prevalence of resistance to currently available
antimicrobials, particularly penicillin and macrolide resistance among S. pneumoniae
and macrolide resistance among M. pneumoniae (11), high treatment failure rates (14%
general hospital ward, �25% outpatient) (12, 13), and adverse effects associated with
current treatment options (14, 15), new treatment options for CABP are needed,
preferably allowing an intravenous-to-oral switch to reduce the length of hospital stay
and hospital-related costs.

Lefamulin is a pleuromutilin antimicrobial in late-stage clinical development for
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intravenous and oral use in patients with CABP. It is an inhibitor of bacterial protein
synthesis by binding to the A and P sites of the peptidyl transferase center in the large
subunit of the bacterial ribosome (16, 17). The unique interaction in this highly
conserved region confers a low propensity for the development of bacterial resistance
and is thought to be the reason for the lack of cross-resistance with other antibacterial
classes, including macrolides, ketolides, lincosamides, fluoroquinolones, and tetracy-
clines (17). The antibacterial spectrum of lefamulin covers the typical Gram-positive and
fastidious Gram-negative respiratory pathogens known to cause CABP and atypical
pathogens, such as M. pneumoniae (including macrolide-resistant strains), C. pneu-
moniae, and L. pneumophila (18, 19). Pharmacokinetic and pharmacodynamic analyses
demonstrated that lefamulin has rapid and predictable penetration into plasma (�1
to 2 �g/ml after a single 150-mg intravenous or 600-mg oral dose) (20) and target
tissues, such as the epithelial lining fluid in the lung (21), reaching area under the
concentration-time curve (AUC):MIC ratios that support the proposed tentative break-
points of 1 �g/ml for S. pneumoniae and 0.5 �g/ml for S. aureus (22). This study
evaluated the in vitro activity of lefamulin and comparators against a global collection
of typical respiratory pathogens that commonly cause CABP, as collected by the
SENTRY Antimicrobial Surveillance Program (2015 to 2016).

The activity of lefamulin and comparators were determined against 8,595 unique
bacterial pathogens collected from 65 medical centers from North America (United
States [34 states]; n � 3,240), 39 from Europe and the Mediterranean region (19 nations,
including Turkey and Israel; n � 3,362), 15 from the Asia-Pacific region (7 nations; n �

1,271), and 10 from Latin America (4 nations; n � 722) and submitted to a central
monitoring laboratory (JMI Laboratories, North Liberty, IA, USA) for confirmation of
bacterial identification (matrix-assisted laser desorption ionization–time of flight mass
spectrometry [MALDI-TOF]) and susceptibility testing. Only 1 isolate per patient infec-
tion episode was included in the surveillance. All organisms were isolated from
documented infections, including 4,667 (54.3%) community-acquired respiratory tract
infections (3,124 S. pneumoniae, 930 H. influenzae, and 613 M. catarrhalis isolates), 2,036
(23.7%) pneumonia in hospitalized patients (276 S. pneumoniae, 1,585 S. aureus, 126 H.
influenzae, and 49 M. catarrhalis isolates), 1,133 (13.2%) bloodstream infections (bacte-
remia; 370 S. pneumoniae, 737 S. aureus, 23 H. influenzae, and 3 M. catarrhalis isolates),
589 (6.9%) skin and skin structure infections (15 S. pneumoniae, 571 S. aureus, and 3. H.
influenzae isolates), and 170 (2.0%) infections from other sites.

MICs for lefamulin and comparators were determined against S. pneumoniae (n �

3,923), S. aureus (n � 2,919), H. influenzae (n � 1,086), and M. catarrhalis (n � 667)
strains from frozen-form MIC panels prepared by JMI Laboratories per Clinical and
Laboratory Standards Institute (CLSI) broth microdilution methods (23). Susceptibility
and comparator categorical interpretations used breakpoint criteria from CLSI M100-
S28 and European Committee on Antimicrobial Susceptibility Testing (2018), where
available (24, 25). Cation-adjusted Mueller-Hinton broth was used for testing S. aureus
and M. catarrhalis and was supplemented with 2.5% to 5% lysed horse blood for S.
pneumoniae. Haemophilus test medium was used for H. influenzae.

Lefamulin demonstrated potent in vitro activity against this large contemporary
collection of bacterial pathogens that commonly cause CABP. Lefamulin at �1 �g/ml,
the proposed tentative susceptible breakpoint for S. pneumoniae based on clinical and
nonclinical studies (22), inhibited 99.2% of all isolates tested, including 100% of S.
pneumoniae isolates, 99.8% of S. aureus isolates, 93.8% of H. influenzae isolates, and
100% of M. catarrhalis isolates (Table 1). The activity of lefamulin against S. pneumoniae,
the most frequently isolated bacterial CABP pathogen, was unaffected by resistance to
other antibacterial classes, including �-lactams, fluoroquinolones, and macrolides as
well as multidrug-resistant (MDR) or extensive drug-resistant strains; all MIC50/90 values
were 0.06/0.12 �g/ml, except among levofloxacin nonsusceptible isolates (0.06/0.25
�g/ml) (Table 1). Lefamulin was among the most potent agents tested and had the
lowest MIC50/90 values against MDR S. pneumoniae (0.06/0.12 �g/ml) (Table 1). Among
comparators, S. pneumoniae isolates showed high rates of susceptibility (�98%) to
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ceftaroline, levofloxacin, linezolid, moxifloxacin, and vancomycin (Table 2). Moderate
resistance (range, 16.8% to 34.3%) was seen to erythromycin, azithromycin, tetracycline,
trimethoprim-sulfamethoxazole, and clindamycin; among the 20.9% of MDR S. pneu-
moniae isolates, rates of resistance to these same agents were higher (range, 46.9% to
98.8%) (Table 2).

Lefamulin was also among the most active compounds against S. aureus (MIC50/90,
0.06/0.12 �g/ml), including methicillin-resistant S. aureus (MRSA; MIC50/90, 0.06/0.12 �g/ml)
(Table 1 and 2). Among comparators, S. aureus isolates showed high rates of susceptibility
(�95%) to ceftaroline, doxycycline, linezolid, trimethoprim-sulfamethoxazole, and vanco-
mycin (Table 2). High resistance rates were observed among MRSA isolates, particularly
to macrolides (azithromycin, 75.5% to 76.2%) and fluoroquinolones (levofloxacin, 72.3%
to 74.0%) (Table 2).

Lefamulin displayed potent activity against H. influenzae, including �-lactamase-
positive isolates (all MIC50/90, 0.5/1 �g/ml). Compared with the Gram-positive patho-
gens, the overall MIC distribution of lefamulin shifted to higher MIC values as observed
for macrolide antibiotics. However, most H. influenzae isolates (93.8%), including
�-lactamase negative (93.2%) and �-lactamase positive (96.0%), were inhibited at
concentrations of �1 �g/ml (Table 1). H. influenzae isolates showed high rates of
susceptibility (�90%) to all comparator agents tested, with the exception of
trimethoprim-sulfamethoxazole and ampicillin (Table 2). Resistance rates were high
to trimethoprim-sulfamethoxazole (39.8% to 41.8%) and to ampicillin (99.6% to 100%)
among �-lactamase-positive isolates, whereas resistance rates were lower among
�-lactamase-negative isolates (trimethoprim-sulfamethoxazole, 28.3% to 30.3%; ampi-
cillin, 2.9% to 9.3%).

All M. catarrhalis isolates were inhibited at lefamulin concentrations of �0.25 �g/ml
(MIC50/90, 0.06/0.12 �g/ml) (Table 1). M. catarrhalis isolates showed high rates of
susceptibility (97.3% to 100%) to all comparators (Table 2). �-Lactamase activity was
detected in 97% of tested isolates (n � 335).

Analysis of lefamulin results by infection type and by geographic region showed no

TABLE 1 Frequency of occurrence of lefamulin MICs for all pathogens tested

Organism (no. of isolates)

Cumulative % of isolates inhibited at lefamulin MIC (�g/ml) of:
MIC50

(�g/ml)
MIC90

(�g/ml)<0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 >8

S. pneumoniae (3,923) 0.1 1.8 11.4 55.1 93.7 99.6 99.9 100.0 0.06 0.12
Penicillin nonsusceptible,

nonmeningitis
(�4 �g/ml) (189)

0.0 1.1 7.9 64.0 98.4 100.0 0.06 0.12

Ceftriaxone nonsusceptible
(�2 �g/ml) (155)

0.0 0.6 10.3 63.9 99.4 100.0 0.06 0.12

Erythromycin nonsusceptible
(�0.5 �g/ml) (1,348)

0.2 2.2 12.4 52.9 93.1 99.0 99.7 100.0 0.06 0.12

Levofloxacin nonsusceptible
(�4 �g/ml) (47)

0.0 8.5 23.4 68.1 89.4 97.9 97.9 100.0 0.06 0.25

MDRa (821) 0.4 2.9 15.8 61.1 96.3 99.8 99.8 100.0 0.06 0.12
XDRa (181) 0.0 0.6 7.2 64.6 98.9 100.0 0.06 0.12

S. aureus (2,919) 26.0 88.9 99.2 99.6 99.7 99.8 99.8 99.8 99.8 100.0 0.06 0.12
Methicillin susceptible (1,981) 25.6 95.2 99.7 99.7 99.8 99.9 �99.9 �99.9 �99.9 100.0 0.06 0.06
Methicillin resistant (938) 26.9 75.7 98.2 99.4 99.5 99.6 99.7 99.8 99.8 100.0 0.06 0.12

H. influenzae (1,086) 1.7 20.4 69.4 93.8 99.1 99.9 100.0 0.5 1
�-lactamase negative (835) 1.9 20.0 67.5 93.2 98.9 100.0 0.5 1
�-lactamase positive (251) 1.2 21.9 75.7 96.0 99.6 99.6 100.0 0.5 1

M. catarrhalis (667) 1.0 2.4 11.1 88.3 99.9 100.0 0.06 0.12
aMDR and XDR status was based on nonsusceptibility to �3 and �5 classes, respectively, of the following antimicrobial agents, as described by Golden et al. (30) and
applying the following breakpoints: penicillin (MIC, �4 �g/ml), ceftriaxone (MIC, �2 �g/ml), erythromycin (MIC, �0.5 �g/ml), clindamycin (MIC, �0.5 �g/ml),
levofloxacin (MIC, �4 �g/ml), tetracycline (MIC, �2 �g/ml), and trimethoprim-sulfamethoxazole (MIC, �1 �g/ml). MDR, multidrug resistant; XDR, extensive drug
resistant.
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TABLE 2 Activity of lefamulin and comparators against pathogens commonly causing community-acquired bacterial pneumonia

Antibacterial agent by pathogena

(no. organisms tested)
MIC50

(�g/ml)
MIC90

(�g/ml)
MIC range
(�g/ml)

Susceptibility rates (%) according to:

CLSIb EUCASTb

S I R S I R

S. pneumoniae
Lefamulin (3,923) 0.06 0.12 �0.008 to 1
Amoxicillin-clavulanic acid (3,902) �0.03 2 �0.03 to �4 93.6 2.9 3.5
Azithromycin (3,921) 0.06 �4 �0.03 to �4 65.7 0.7 33.6 65.3 0.4 34.3
Ceftaroline (3,905) �0.008 0.12 �0.008 to �1 99.8 99.5 0.5
Ceftriaxone (3,905) 0.03 1 �0.015 to �2 86.5 9.5 4.0c 86.5 12.5 0.9

96.0 3.0 0.9d

Clindamycin (3,906) �0.25 �1 �0.25 to �1 82.7 0.5 16.8 83.2 16.8
Erythromycin (3,907) 0.03 �2 �0.015 to �2 65.5 0.4 34.1 65.5 0.4 34.1
Levofloxacin (3,923) 1 1 �0.12 to �4 98.8 0.1 1.1 98.8 1.2
Moxifloxacin (2,088e) 0.12 0.25 �0.03 to �4 98.9 0.5 0.6 98.8 1.2
Penicillin (3,923) �0.06 2 �0.06 to �8 65.6 22.4 12.0f 65.6 34.4c

65.6 34.4g 65.6 29.5 4.8d

95.2 4.4 0.4h

Tetracycline (3,922) �0.25 �4 �0.25 to �4 76.7 0.5 22.8 76.7 0.5 22.8
Trimethoprim-sulfamethoxazole (3,921) �0.5 �4 �0.5 to �4 71.2 10.8 18.1 77.8 4.2 18.1

MDR S. pneumoniae
Lefamulin (821) 0.06 0.12 �0.008 to 1
Amoxicillin-clavulanic acid (820) 1 �4 �0.03 to �4 74.1 11.7 14.1
Azithromycin (821) �4 �4 0.015 to �4 1.2 1.1 97.7 1.0 0.2 98.8
Ceftaroline (821) 0.06 0.25 �0.008 to �1 99.3 97.8 2.2
Ceftriaxone (821) 0.5 2 �0.015 to �2 55.8 25.8 18.4c 55.8 39.8 4.4

81.6 14.0 4.4d

Clindamycin (821) �1 �1 �0.25 to �1 22.4 1.8 75.8 24.2 75.8
Erythromycin (821) �2 �2 �0.015 to �2 0.6 0.6 98.8 0.6 0.6 98.8
Levofloxacin (821) 1 1 0.25 to �4 96.5 0.2 3.3 96.5 3.5
Moxifloxacin (427e) 0.12 0.25 �0.03 to �4 97.2 1.6 1.2 97.0 3.0
Penicillin (821) 1 4 �0.06 to �8 16.3 41.4 42.3f 16.3 83.7c

16.3 83.7g 16.3 62.1 21.6d

78.4 19.5 2.1h

Tetracycline (821) �4 �4 �0.25 to �4 4.5 1.1 94.4 4.5 1.1 94.4
Trimethoprim-sulfamethoxazole (821) 2 �4 �0.5 to �4 32.9 20.2 46.9 45.3 7.8 46.9

S. aureus
Lefamulin (2,919) 0.06 0.12 �0.03 to �32
Azithromycin (2,919) 0.5 �4 �0.03 to �4 59.3 1.4 39.4 58.7 0.6 40.7
Ceftaroline (2,919) 0.25 1 �0.06 to �8 95.0 4.8 0.1 95.0 4.8 0.1i

95.0 5.0j

Clindamycin (2,919) �0.25 �2 �0.25 to �2 85.8 0.2 14.0 85.5 0.3 14.2
Doxycycline (2,919) �0.06 0.25 �0.06 to �8 97.9 2.0 0.1 95.1 0.9 4.0
Erythromycin (2,919) 0.25 �8 �0.06 to �8 58.9 5.3 35.8 59.5 1.8 38.7
Levofloxacin (2,919) 0.25 �4 �0.03 to �4 72.2 0.9 26.9 72.2 27.8
Linezolid (2,919) 1 1 �0.12 to 8 �99.9 �0.1 �99.9 �0.1
Moxifloxacin (1,646e) �0.06 4 �0.06 to �4 73.4 7.5 19.1 73.0 27.0
Oxacillin (2,919) 0.5 �2 �0.25 to �2 67.9 32.1 67.9 32.1
Trimethoprim-sulfamethoxazole (2,919) �0.5 �0.5 �0.5 to �4 98.2 1.8 98.2 0.2 1.6
Vancomycin (2,919) 0.5 1 �0.12 to 2 100.0 0.0 0.0 100.0 0.0

MRSA
Lefamulin (938) 0.06 0.12 �0.03 to �32
Azithromycin (938) �4 �4 0.06 to �4 23.8 0.7 75.5 23.3 0.4 76.2
Ceftaroline (938) 1 2 0.25 to �8 84.5 15.0 0.4 84.5 15.0 0.4i

84.5 15.5j

Clindamycin (938) �0.25 �2 �0.25 to �2 62.0 0.0 38.0 61.9 0.1 38.0
Doxycycline (938) �0.06 2 �0.06 to �8 94.5 5.3 0.2 89.4 1.4 9.2
Erythromycin (938) �8 �8 �0.06 to �8 23.3 4.7 72.0 23.8 1.2 75.1
Levofloxacin (938) �4 �4 0.06 to �4 26.0 1.7 72.3 26.0 74.0
Linezolid (938) 1 1 �0.12 to 2 100.0 0.0 100.0 0.0
Moxifloxacin (536e) 2 �4 �0.06 to �4 29.7 18.5 51.9 28.7 71.3
Oxacillin (938) �2 �2 �2 to �2 0.0 100.0 0.0 100.0
Trimethoprim-sulfamethoxazole (938) �0.5 �0.5 �0.5 to �4 94.9 5.1 94.9 0.6 4.5
Vancomycin (938) 0.5 1 �0.12 to 2 100.0 0.0 0.0 100.0 0.0

(Continued on next page)
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apparent differences across isolate sources and across Asia-Pacific, Europe, Latin Amer-
ica, or North America.

Our results are consistent with previous studies reporting on the in vitro activity of
lefamulin against typical and atypical respiratory pathogens (e.g., M. pneumoniae, C.
pneumoniae, and L. pneumophila) (18, 19, 26, 27). Furthermore, the in vitro activity of
lefamulin has translated to clinical efficacy in two phase 3 clinical trials in adults with
CABP, demonstrating the noninferiority of 5 to 10 days of lefamulin versus 7 to 10 days
of moxifloxacin given in intravenous-to-oral or oral administration (28, 29).

In conclusion, lefamulin was highly active against pathogens commonly causing
CABP collected globally between 2015 and 2016, with activity consistent across geo-
graphic regions and unaffected by resistance to other antibacterial classes. These data
support the ongoing clinical development of lefamulin for the treatment of CABP and
other respiratory tract infections.
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TABLE 2 (Continued)

Antibacterial agent by pathogena

(no. organisms tested)
MIC50

(�g/ml)
MIC90

(�g/ml)
MIC range
(�g/ml)

Susceptibility rates (%) according to:

CLSIb EUCASTb

S I R S I R

H. influenzae
Lefamulin (1,086) 0.5 1 �0.12 to 8
Amoxicillin-clavulanic acid (1,086) 0.5 2 �0.12 to �8 98.0 2.0 94.3 5.7
Ampicillin (1,086) 0.5 �8 0.12 to �8 69.7 5.1 25.2 69.7 30.3
Azithromycin (1,086) 1 1 0.12 to �4 98.8 98.8k

Cefepime (1,086) 0.06 0.25 �0.015 to �2 99.8 96.6 3.4
Ceftriaxone (1,086) �0.015 �0.015 �0.015 to 0.5 100.0 98.5 1.5
Clarithromycin (1,086) 8 8 0.25 to �16 91.9 6.4 1.7 100.0k

Levofloxacin (1,086) �0.015 0.03 �0.015 to �2 99.6 98.2 1.8
Moxifloxacin (550e) 0.03 0.03 0.008 to �1 99.6 98.9 1.1
Tetracycline (1,086) 0.5 0.5 �0.12 to �8 98.3 0.1 1.6 98.2 0.2 1.7
Trimethoprim-sulfamethoxazole (1,086) 0.12 �4 �0.06 to �4 65.7 3.4 30.9 65.7 1.4 33.0

M. catarrhalis
Lefamulin (667) 0.06 0.12 �0.008 to 0.25
Amoxicillin-clavulanic acid (667) 0.12 0.25 �0.06 to 0.5 100.0 0.0 100.0 0.0
Azithromycin (662) 0.015 0.03 0.002 to 0.06 100.0 100.0 0.0 0.0
Ceftriaxone (667) 0.25 0.5 �0.015 to 2 100.0 99.7 0.3 0.0
Clarithromycin (662) �0.12 �0.12 �0.12 to 0.25 100.0 100.0 0.0 0.0
Erythromycin (662) 0.12 0.12 �0.015 to 1 100.0 98.9 0.8 0.3
Levofloxacin (667) 0.03 0.06 �0.015 to 1 100.0 99.4 0.6
Moxifloxacin (221e) 0.06 0.06 0.03 to 0.5 99.5 0.5
Tetracycline (667) 0.25 0.25 �0.03 to 0.5 100.0 0.0 0.0 100.0 0.0 0.0
Trimethoprim-sulfamethoxazole (667) 0.12 0.25 �0.06 to 2 97.3 2.7 0.0 97.3 2.1 0.6

aMDR, multidrug resistant; MRSA, methicillin-resistant S. aureus.
bCriteria as published by CLSI 2018 and EUCAST 2018. CLSI, Clinical and Laboratory Standards Institute; EUCAST, European Committee on Antimicrobial Susceptibility
Testing; I, intermediate; R, resistant; S susceptible.

cUsing meningitis breakpoints.
dUsing nonmeningitis breakpoints.
eMoxifloxacin was tested in 2016 but not in 2015.
fUsing oral breakpoints.
gUsing parenteral, meningitis breakpoints.
hUsing parenteral, nonmeningitis breakpoints.
iUsing other than pneumonia breakpoints.
jUsing pneumonia breakpoints.
kPercentage of wild type based on epidemiological cutoff value. EUCAST version 8.0 (2018).
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